BIASING OF BJTS

Table of Contents

The Bipolar Junction Transistor_		slide 3
BJT Relationships – Equations		slide 4
DC β and DC α		slides 5
BJT Example		slide 6
BJT Transconductance Curve		slide 7
Modes of Operation		slide 8
Three Types of BJT Biasing		slide 9
Common Base	slide 10-11	
Common Emitter	slide 12	
Common Collector	slide 13	
Eber-Moll Model		slides 14-15
Small Signal BJT Equivalent Circuit		slides 16
The Early Effect		slide 17
Early Effect Example		slide 18
Breakdown Voltage		slide 19
Sources		slide 20

<u>The BJT – Bipolar Junction Transistor</u>

 β Note: It will be very helpful to go through the Analog Electronics Diodes Tutorial to get information on doping, n-type and p-type materials.

The Two Types of BJT Transistors:

- Collector doping is usually ~ 10⁶
- Base doping is slightly higher ~ 10⁷ 10⁸
- Emitter doping is much higher ~ 10¹⁵

BJT Relationships - Equations

Note: The equations seen above are for the transistor, not the circuit.

<u> DC βand DC α</u>

- β = Common-emitter current gain
- α = Common-base current gain

$$\beta = \frac{\mathbf{I}_{\mathbf{C}}}{\mathbf{I}_{\mathbf{B}}} \qquad \alpha = \frac{\mathbf{I}_{\mathbf{C}}}{\mathbf{I}_{\mathbf{E}}}$$

Note: α and β are sometimes referred to as α_{dc} and β_{dc} because the relationships being dealt with in the BJT are DC.

BJT Example

Using Common-Base NPN Circuit Configuration

Given: $I_B = 50 \ \mu A$, $I_C = 1 \ mA$

Find: I_E , β , and α

Solution:

 $I_{E} = I_{B} + I_{C} = 0.05 \text{ mA} + 1 \text{ mA} = 1.05 \text{ mA}$

 $\beta = I_c / I_B = 1 \text{ mA} / 0.05 \text{ mA} = 20$

 $\alpha = I_c / I_e = 1 \text{ mA} / 1.05 \text{ mA} = 0.95238$

 α could also be calculated using the value of β with the formula from the previous slide.

$$\alpha = \beta = 20 = 0.95238$$

 $\beta + 1 = 21$

BJT Transconductance Curve

Typical NPN Transistor¹

Collector Current:

 $\mathbf{I}_{c} = \alpha \mathbf{I}_{ES} \mathbf{e}^{\mathbf{V}_{BE}/\eta \mathbf{V}_{T}}$

Transconductance: (slope of the curve)

 $\mathbf{g}_{m} = \beta \mathbf{I}_{C} / \beta \mathbf{V}_{BE}$

I_{ES} = The reverse saturation current of the B-E Junction. V_T = kT/q = 26 mV (@T=300K) η = the emission coefficient and is V_{BE} usually ~1

Modes of Operation

Active:

- Most important mode of operation
 - Central to amplifier operation
 - The region where current curves are practically flat

Saturation: • Barrier potential of the junctions cancel each other out causing a virtual short

Cutoff:

- Current reduced to zero
 - Ideal transistor behaves like an open switch

* Note: There is also a mode of operation called inverse active, but it is rarely used.

Three Types of BJT Biasing

Biasing the transistor refers to applying voltage to get the transistor to achieve certain operating conditions.

Common-Base Biasing (CB) : input $= V_{EB} \& I_{E}$

Common-Collector Biasing (CC): input = $V_{BC} \& I_{B}$

output = $V_{EC} \& I_{E}$

output = V_{CB} & I_{C}

Common-Base

Although the Common-Base configuration is not the most common biasing type, it is often helpful in the understanding of how the BJT works.

Emitter-Current Curves

Common-Base

Circuit Diagram: NPN Transistor

The Table Below lists assumptions that can be made for the attributes of the common-base biased circuit in the different regions of operation. Given for a Silicon NPN transistor.

Region of Operation	I _c	V _{CE}	V _{BE}	V _{CB}	C-B Bias	E-B Bias
Active	βl _B	$= V_{BE} + V_{CE}$	~0.7V	β 0V	Rev.	Fwd.
Saturation	Max	~0V	~0.7V	-0.7V <v<sub>CE<0</v<sub>	Fwd.	Fwd.
Cutoff	~0	=V _{BE} +V _{CE}	β 0V	β 0V	Rev.	None /Rev.

<u>Common-Emitter</u>

Common-Collector

Emitter-Current Curves

The Common-Collector biasing circuit is basically equivalent to the common-emitter biased circuit except instead of looking at I_c as a function of V_{CE} and I_B we are looking at I_E .

Also, since $\alpha \sim 1$, and $\alpha = I_c/I_E$ that means $I_c \sim I_E$

Eber-Moll BJT Model

The Eber-Moll Model for BJTs is fairly complex, but it is valid in all regions of BJT operation. The circuit diagram below shows all the components of the Eber-Moll Model:

Eber-Moll BJT Model

 α_{R} = Common-base current gain (in forward active mode) α_{F} = Common-base current gain (in inverse active mode) I_{ES} = Reverse-Saturation Current of B-E Junction I_{CS} = Reverse-Saturation Current of B-C Junction

 $I_{c} = \alpha_{F}I_{F} - I_{R} \qquad I_{B} = I_{E} - I_{C}$ $I_{E} = I_{F} - \alpha_{R}I_{R}$

 $I_{F} = I_{ES} [exp(qV_{BE}/kT) - 1] \qquad I_{R} = I_{C} [exp(qV_{BE}/kT) - 1]$

 $I_R = I_C [exp(qV_{BC}/kT) - 1]$

Small Signal BJT Equivalent Circuit

The small-signal model can be used when the BJT is in the active region. The small-signal active-region model for a CB circuit is shown below:

The Early Effect (Early Voltage)

 $\overline{\text{Green}} = \text{Ideal I}_{c}$ $\overline{\text{Orange}} = \text{Actual I}_{c} (\text{I}_{c}')$

$$\mathbf{I}_{c}' = \mathbf{I}_{c} \left(\begin{array}{c} \mathbf{V}_{cc} + 1 \\ \mathbf{V}_{A} \end{array} \right)$$

Early Effect Example

Given: The common-emitter circuit below with $I_B = 25 \mu A$, $V_{cc} = 15V, \beta = 100 \text{ and } V_{A} = 80.$ Find: a) The ideal collector current b) The actual collector current **Circuit Diagram** V_{CE} C $\beta = 100 = 1 \beta_{\rm B}$ a) V_{cc} $I_{c} = 100 * I_{B} = 100 * (25 \times 10^{-6} \text{ A})$ l_R $I_{c} = 2.5 \, mA$ b) $I_{c}' = I_{c} \left(\frac{V_{cE}}{V} + 1 \right) = 2.5 \times 10^{-3} \left(\frac{15}{80} + 1 \right) = 2.96 \text{ mA}$ $I_{c}' = 2.96 \text{ mA}$

Breakdown Voltage

The maximum voltage that the BJT can withstand.

BV_{CEO} = The breakdown voltage for a common-emitter biased circuit. This breakdown voltage usually ranges from ~20-1000 Volts.

 $\begin{array}{ll} \mathsf{BV}_{\mathsf{CBO}} = & & \mbox{The breakdown voltage for a common-base biased} \\ & \mbox{circuit. This breakdown voltage is usually much} \\ & \mbox{higher than } \mathsf{BV}_{\mathsf{CEO}} \mbox{ and has a minimum value of \sim60} \\ & \mbox{Volts.} \end{array}$

Breakdown Voltage is Determined By:

- The Base Width
- Material Being Used
 - Doping Levels
 - Biasing Voltage

Dailey, Denton. <u>Electronic Devices and Circuits, Discrete and Integrated.</u> Prentice Hall, New Jersey: 2001. (pp 84-153)

¹ Figure 3.7, Transconductance curve for a typical npn transistor, pg 90.

Liou, J.J. and Yuan, J.S. <u>Semiconductor Device Physics and Simulation</u>. Plenum Press, New York: 1998.

Neamen, Donald. <u>Semiconductor Physics & Devices. Basic Principles.</u> McGraw-Hill, Boston: 1997. (pp 351-409)

Web Sites

http://www.infoplease.com/ce6/sci/A0861609.html